# CHEMICAL STUDIES ON CONDITIONING AND PASTA QUALITY OF SOME WHEAT VARIETIES

BY

M.A. TORKI\*; N,Y. ATTIA\*; A.R. ABD EL LATTIF\*\*

AND A. EL BARDENY\*\*\*.

\* Dept of Agric. Biochem, Fac. of Agric.,

Moshtohor, Zagazig Univ.

\*\* National Research Center. \*\*\*Research and Experiment Lab., North Cairo Milling Company.

#### ABSTRACT

The chemical composition and the effect of conditioning lying time of the Egyptian wheat variety Strok's (Triticum durum L.) and an Australian (Triticum aestivum) variety were studied. Factors affecting pasta brownness, quality and cooking were also studied using; three varieties of imported semolina flour (Roma, Capri and Buitoni) beside strok's flour and two imported T. aestivum varieties manufactured pasta (macaoni). Egyptian durum kernels and flour were characterized by its higher ash, crude fiber, protein, sugars and a amylase activity. The conditioning lying time was five hrs. for durum wheat while it was 12 hrs. for aestivum wheat. Durum stork's pasta was brown and had the highest grade color value while, imported semolina pasta was yellow and had the lowest grade color. Aestivum pasta (Amoun and Mataria) had brown and pale brown color and lesser grade value than stork's. Brownness was attributed to varietal, bran contamination, enzymatic and non enzymatic reactions. Semolina and stroks had short periods of dough stability. Strok's showed the highest dough weakening. Amoun had the highest stability and lowest weakening. Aestivum macaroni had lower cooking quality due to its lower increasing of weight and its higher cooking loss.

### INTRODUCTION

Durum wheat (<u>Triticum durum Desf.</u>) is prefered over other classes of wheat for the production of pasta products due to its excellent rheological properties, superior color and cooking quality (Dexter and Matsuo, 1978).

The objective of wheat conditioning is primarily to improve the physical state of grain for milling and sometimes to improve the baking quality of the milled flour. Refai (1965) stated that wheat conditioning made direct or indirect interior action in flour which improves its characteristics. Also, alpha amylase which is found in

small amounts in dry grains increased after conditioning process. Anon (1969) reported that grain conditioning made biochemical changes in grains, which have an influence on protein as well specially gluten, saccharides and enzymatic activity. Stenvert and Kingswood (1977) noticed that endosperm structure was of primary importance in controlling water penetration rates and that soft open endosperm structures permitted more rapid water movement than hard structure one.

Brennan (1982) showed that the time required to bring sound, good quality durum to optimum milling condition is from five to six hrs., Longer periods cause pigment changes resulting in loss of color in both semolina, pasta and products. They added that durum wheat is usually milled at moisture content of approximately 16% to yield semolina at 14% moisture content. Kent (1983) reported that the optimum moisture content varies for different wheat types, being higher for hard wheats than for soft wheats. Tawfik and Mansour (1983) cited that T. durum wheat var. Stork was tempered to 16% moisture content and allowed to condition for 24 hrs. Ashour (1985) studied the conditioning of Giza 155 and stork's. The results showed that samples were conditioned at 15% and 16% moisture content for Giza 155 and strok's respectively for 24 hrs., then each wheat variety was milled.

Using hard or soft wheat (T. aestivum) flour for pasta production rather than durum semolina does not give the final product the acceptable cooking quality. Mansour (1981) stated that the protein and gluten content must be higher than 10% and 23% respectively in flour used in macaroni production. Anon (1983) cited that semolina flour must have protein content not less than 13% on dry basis.

Color of pasta products is an important indicator of quality. Refai (1982) mentioned that color of semolina is a varietal factor. Anon (1983) reported that cooking loss of macaroni made from semolina not exceeds 8% and its swelling index not less than 3% while, macaroni from wheat flour other than durum have minimum swelling index 2 and cooking loss not exceeds 10%

The local sector depends mainly on the imported hard or soft wheat flour (72% extraction) for macaroni processing, which does not give the final product the acceptable yellow color or superior cooking quality. A try to produce pasta from stork's (T.durum) which was cultivated in upper Egypt was carried on, but its results were unsatisfactory due to the brown color of the product. On the other hand macaroni processed from local patent flour (72% extraction) yielded a product with a pale color and low cooking quality

Conditioning And Pasta Quality of Some Wheats.

Therefore, the aim of this work is to evaluate the effect of conditioning on pasta quality produced from local storks and the imported soft wheat (Australian wheat).

### MATERIALS AND METHODS

#### Materials:

a- Two varieties of wheat were subjected to determine thier chemical constituents and studying the effect of conditioning lying time on thier flour chemical and rheological properties. The local stork's (Triticum durum) kernels and flour were obtained from the Breading Research Section. Agric. Res. Cent. Ministry of Agriculture. And, Australian soft wheat variety belongs to (Triticum aestivum) kernels and flour were obtained from North Cairo Milling Factory

b- Three varieties of imported semolina (Roma, Capri and Buitoni) and their manufactured macaroni(Pasta).

c- Two imported  $\underline{\mathbf{T}}$ . aestivum flour (72% extraction) used in Sawa manufacture (hard one for Amoun and soft one for Mataria macaroni).

Different samples were subjected to study factors affecting pasta brownness and cooking quality.

### b- Methods:

Moisture, ash, reducing and non-reducing sugars, lipids, proteins (Nx5.7) and pigments contents were determined according to A.O.A.C-(1980). Alpha amylase activity was carried out according to A.O.A.C (1980) using Falling Number system. Starch, crude fibers, gluten, non protein nitrogen, browness, grade color and available lysine content were determined according to; Kerr et al., (1951), Refai (1965), Kent-Jones and Amos (1967), Matsuo and Irvin (1967), Anon (1976) and Hall et al., (1973), respectively. Rheological properties were carried out using Brabender Farinograph test according to A.A.C.C. (1962).

### RESULTS AND DISCUSSION

Chemical constituents of wheat kernels and flour:

The kernels and flour of the two wheat varieties were subjected to chemical analysis. Data in Table (1) show that

Table(1):Chemical constituents of wheat kernels and flour (on dry basis)

| Variety    | Moisture | Ash  | Crude fiber | Total protein | Moisture Ash Grude fiber Total protein Nen prottein nitrogen Gluten Content Red sugars Non red sugars Total sugars X X X X X X X Dital sugars | Gluten                | Content | Red sugars | Non red sugars | Total sugars | 3     | Starch a-amylese ' Lipids Pigments ** % activity % p.p.m. | Lipids | Pigments **<br>p.p.m. |
|------------|----------|------|-------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------|------------|----------------|--------------|-------|-----------------------------------------------------------|--------|-----------------------|
| T.durum    |          |      |             |               |                                                                                                                                               | methern chemistry for |         |            |                |              |       |                                                           |        |                       |
| Stork's    |          |      |             |               |                                                                                                                                               |                       |         |            |                |              |       |                                                           |        |                       |
| Kernels    | 10.6     | 1.94 | 2.40        | 14.85         | i                                                                                                                                             | ı                     | ı       | 0.90       | 1.30           | 2.20         | 59.56 | 11.27                                                     | 2.30   | 7.88                  |
| Flour      | 15.8     | 1.05 | 0.35        | 13.43         | 0.42                                                                                                                                          | 30.50                 | 14.98   | 1.14       | 1.06           | 2.20         | 78.58 | 22.00                                                     | 1.21   | 7.10                  |
| T.aestivum |          |      |             |               |                                                                                                                                               |                       |         |            | (#             |              |       |                                                           |        |                       |
|            |          |      |             |               |                                                                                                                                               |                       |         |            |                |              |       |                                                           |        |                       |
| Kernels    | 11.8     | 1.50 | 2.00        | 8.84          | 1                                                                                                                                             | ī                     | i       | 0.72       | 1.10           | 1.82         | 69.12 | 12.95                                                     | 1.97   | 2.8                   |
| Flour      | 14.2     | 0.45 | 0.20        | 7.96          | 0.185                                                                                                                                         | 25.00                 | 10.00   | 0.33       | 0.77           | 1.10         | 87.29 | 16.67                                                     | 1.12   | 2.60                  |

• P.LN. on 15% moisturebasis.

durum (strok's) kernels and flour had higher ash and crude fibers content than that of Australian aestivum. Durum flour had higher moisture content due to its higher water absorption during conditioning, hence enzymatic activity could be higher in the kernels and the obtained flour and affects alternatively on pasta quality. Strok's kernels or flour contain high ash content which give negative effect on the color of produced pasta. Also, stork's high crude fiber content (0.35%) could be attributed to higher flour extraction more then 72%.

On the other hand as shown in Table (1) durum wheat kernels had higher protein content than that of aestivum while, its extracted flour contained lower protein content. Durum wheat is characterized by its high total sugers (reducing and non reducing) and low starch contents in addition to its high alpha amylase activity. Durum high sugars content could be attributed to starch damage which occurs during milling process (Kingswood, 1975). Also high reducing sugars may be due to the longer conditioning time and humidity which increases the activity of alpha amylase (Anon 1969). Comparing the starch and protein content of T. durum it could be concluded that there are an inverse relation. These results are in agreement with those of Fraser and Holmes (1959). Australian soft wheat and its extracted flour had lower crude lipids and pigments contents. The high crude lipids content for the whole wheat kernels is due to its germ and bran high lipids content (Refai, 1965).

Effect of Conditioning lying Time:

Data in Table (2) show the effect of different lying time from (1 to 24hrs) on the chemical composition of both. T. durum and T. aestivum. Results show that after 1 hr lying time flour contained high amolunt of ash content indicating that separation of husk and endosperm during milling was not complete. T. aestivum contains low amount of ash due to its soft endosperm texture. Flour moisture content increased by increasing lying time, and after one hour of conditioning the moisture content of  $\underline{T}$ . aestivum was higher than that of  $\underline{T}$ . durum. This observation is due to the fact that endosperm structure is primary important in controlling water penetration rates (Stenvert and Kingswood 1977 and Kent, 1983). Data show positive relationship between browning, alpha amylase activity and non protein nitrogen. The alpha amylase activity increased twice in wheat kernels while its increment in flour was very slight.

This phenomenon is due to that  $\alpha$  amylase activity is restricted to the aleuron and scutellum layers of mature kernels (Refai, 1965). Both non protein nitrogen and lipids

Table (2): Effect of conditioning lying on T. durum & T. aestirum  $\cdot$  (Australion soft).

| Lying<br>Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Flour<br>Yield | Moisture | Ash  | Lipids                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sugars                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           | Alpha-amylase<br>activity<br>(P.L.N) | 1      | Non-<br>protein | Pigment | Browning   | Reducing                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------|------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------|--------|-----------------|---------|------------|-------------------------|
| (hrs.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ext. rate      | P.º      | 3/8  | Pá                                  | Reduing %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Non reducing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Total                     | Wheat                                | Flour  | nitrogen<br>. 7 | mdd     | 400nm<br>A | non protein<br>nitrogen |
| T.durum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |          |      |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Brahlannagannar Dunghawar |                                      |        |                 | 2.      |            |                         |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 72.09          | 12.9     | 1.00 | 2.40                                | 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.13                      | 13.27                                | 11.75  | 0.156           | 9.9     | 0.150      | Control                 |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 72.69          | 14.2     | 0.89 | 1.98                                | 0.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.15                      | 13.92                                | 12.13  | 0.184           | 7.1     | 0.160      | 4.88:1                  |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 72.88          | 14.3     | 0.88 | 1.53                                | 1.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.6.1                     | 18.52                                | 13.13  | 0.234           | 6.7     | 0.178      | 3.10:1                  |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 72.15          | 14.2     | 0.88 | 1.40                                | 1.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.4.1                     | 29.00                                | 14.7.1 | 0.270           | 6.5     | 0.180      | 2.25:1                  |
| 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 71.78          | 14.2     | 0.88 | 1.32                                | 1.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.30                      | 32.00                                | 16.57  | 0.305           | 4.9     | 0.188      | 1.46:1                  |
| T.aestivum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |          |      |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                                      | ,      |                 |         |            |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 72.27          | 13.9     | 0.77 | 2.29                                | 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.97                      | 15.00                                | 13.95  | 0.0400          | 2.29    | 0.150      | Control                 |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 72.50          | 14.0     | 0.50 | 2.10                                | 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.20                      | 16.80                                | 15,23  | 0.081           | 5.5     | 0.160      | 1.15:1                  |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 72.91          | 14.3     | 0.62 | 2.11                                | 1.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.4                       | 20.90                                | 16.18  | 0.101           | 2.85    | 0.177      | 1.38:1                  |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 72.56          | 6.11     | 0.62 | 1.88                                | 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.50                      | 25.00                                | 17.00  | 0.130           | 2.23    | 0.193      | 3.25:1                  |
| 157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 72.78          | 14.3     | 0.51 | 1.5.1                               | 1.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.5                      | 30,20                                | 17.59  | 0.150           | 2.68    | 0.197      | 1.86:1                  |
| The second name of the second na |                |          | -    | Special designment of the second of | The state of the s | CONTRACTOR OF STREET, | -                         |                                      |        |                 |         |            |                         |

content showed gradual reduction and reached their minimum value after 24 hrs. Such reduction in lipids content could be attributed to lipase activity at high moisture content. However, the reduction of lipids content is associated with an increment in soluble carbohydrates. Prolonging lying time activates different hydrolyzing enzymes. Therefore, reducing sugars were increased while non reducing sugars were decreased and total sugars reached its maximum after 12 and 18 hrs. in T. durum and T. aestivum flour respectively, then reduction took place due to consumption during conditioning. Pigments were at their lowest value in T. durum after 24 hrs. conditioning, this could be attributed to pigment distruction by lipoxidases (Brennan 1982). In the case of T. aestivum conditioning had a slight effect on its low pigment content. The reducing sugar/amino acid ratio showed a reduction from 4.88:1 to 1.46:1 and from 4.51:1 to 1.86:1 in both T. durum and T. aestivum respectively. Which accelerate their pasta brownining (Abd Elsalam, 1982).

# The Effect of conditioning time on rheological properties:-

The effect of conditioning on farinograph test

presented in table(3) and illustrated in fig (1).

Samples of T. durum conditioned for 5 hrs. showed high; dough development, arrival and stability times and valorimeter value while, water absorption and weakening of the dough showed their lowest value. semolina and flour which are low in farinograph water absorption are of great demand for pasta dough property that give hemogenous dough mass for macaroni processing. Therefore conditioning lying time for 5 hrs. is prefered for Egyptian durum strok's to yield pasta of good quality.

The rheological properties of <u>T</u>. <u>aestivum</u> showed that at 12 hrs. conditioning time water absorption was low (57.0%). The mixing and arrival times increased gradually by increasing conditioning time indicating that <u>T</u>. <u>aestivum</u> variety contains stronger gluten content than <u>T</u>. <u>durum</u>. On the other side, durum protein content is higher than aestivum. Pasta quality depends mainly on protein content and the nature of the protein within the gluten complex (Dexter and Matsuo, 1978). At the same conditioning time, dough stability and valorimeter value were high. According to the obtained results, it can be concluded that 12 hrs. Conditioning time is suitable for Australian aestivum to producce flour of good quality.

# Pasta Quality:

Color is an important indicator to pasta quality. Results concerning the chemical characteristics of spaghetti macaroni processed from T. aestivum (Amoun and Mataria),

Table(3): Effect of conditioning lying time on rheological properties of T. Durum and T.aestivum.

| Conditioning     | *************************************** | Donah               | 7               | 7                 |                       | opherology (dependency of the property of the property of the contract of the | Degree of so    | Degree of softening after |
|------------------|-----------------------------------------|---------------------|-----------------|-------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------|
| lying time hours | Absorption %                            | development<br>min. | arrival<br>min. | stability<br>min. | eakening of the dough | Valorimeter<br>value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 min.<br>B.u. | 20 min.<br>B.U.           |
| T.durum          |                                         |                     |                 |                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                           |
| 1                |                                         |                     |                 |                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                           |
|                  | 63.14                                   | 1.3                 | 0.4             | 5.5               | 80                    | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 65              | 110                       |
| ເດ               | 60.87                                   | 1.75                | 0.5             | 5.1               | 75                    | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 09              | 105                       |
| 12               | 96.09                                   | 1.4                 | 0.5             | 3.0               | 105                   | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20              | 115                       |
| 18               | 61.44                                   | 1.3                 | 0.3             | 3.75              | 100                   | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 85              | 140                       |
| 24               | 63.03                                   | 1.3                 | 0.3             | 2.75              | 00                    | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 65              | 110                       |
| T.aestivum       |                                         |                     |                 |                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                           |
|                  |                                         |                     |                 |                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                           |
|                  | 55.3                                    | 2.3                 | 1.2             | 5.0               | 105                   | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 85              | 110                       |
| 2                | 57.5                                    | 2.0                 | 1.2             | 4.8               | 105                   | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 92              | 115                       |
| 12               | 57.0                                    | 2.2                 | 1.0             | 4.7               | 110                   | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 80              | 105                       |
| 18               | 57.7                                    | જ.                  | 1.25            | 4.5               | 115                   | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 92              | 115                       |
| 24               | 56.9                                    | 2.7                 | 1.5             | 4.7               | 80                    | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 70              | 100                       |



Fig.(1)Effect of conditioning lying time on T. durum and T. aestivum farinogram .

T. durum strok's (5 hrs. conditioning time) and the three imported varieties of semolina (Turkey) are show in table (4). The obtained results indicate that durum strok's was brown and had the highest grade color value while, pasta made from imported semolina was yellow and had the lowest grade color. T. aestivum pasta Amoun and Mataria had brown color and lesser grade value than stroks.

Due to strok's highest pigment loss during processing strok's spaghetti had the lowest pigment content (3.45 P.P.m.) comparing with other durum spaghetties. Irvin(1971) stated that pigment loss during pasta processing is caused by lipoxidase enzymes. Therefore, it could be concluded that lipoxidase activity is higher in strok's than in other durum spaghetties. There is a positive correlation between pigment loss and brownness during pasta processing . This result is in agreement with that of Matsuo et al., (1982) High lipoxidase activity could be attributed to varietal characteristics (Walsh et al., 1970).high extraction rate (Matsuo et al., 1982) and long conditioning lying time with high moisture content. Storks spaghetti had the highest lysine loss percentage during processing (Table, 4). Lysine loss could be attributed to Millard reaction during pasta drying (Lysine blocking) in addition to some lysine destruction (Manser, 1981). The highest lysin loss in storks pasta could be attributed to its high reducing sugar content and high non protein nitrogen content which accelerate Millard reaction. During storage, advances in Millard reaction takes place and stork's spaghetti becomes browner and duller by time.

## Pasta Rheological Property

Data in table (5) and fig (2) show the farinogram of  $\underline{T}$ .  $\underline{aestivum}$  and  $\underline{T}$ .  $\underline{durum}$  flours and semolina under investigation. Semolina samples had the lowest water absorption value. Low water absorption is of great demand for pasta dough property that gives a hemogenous dough mass for macaroni processing. Dough development time was higher in semolina than other flours while, stork's flour had the lowest development time. However, the reduction in dough mixing time is usually associated with weaker gluten (Dexter and Matsuo 1978). Semolina and stork's showed shortest dough stability time and highest dough weakening Amoun had the highest dough stability and the shortest dough weakening. Weaking of the dough (B.U.) is very important factor affecting its suitability for macaroni production. According to Irvin and Anderson (1951), ideal dough should rise to a peak rapidly and should break slowly in the farinogram. Increasing dough weakening would in turn increase dough stability for macaroni production (Morad et al., 1980). Amoun had the highest valorimeter value while, stork's had the lowest. Mataria had weaker gluten due to its low protein content (7.9%). Also, stork's has weaker gluten because of its protein quality and unfavourable milling conditioning which accelerate the enzymatic activity and weaken the dough.

Table (f 4 ): Chemical characteristics of spaghetti Macaroni effective factors of colour (on dry basis).

|                       | -                         |                           |               |          |        |        |         |         |   |
|-----------------------|---------------------------|---------------------------|---------------|----------|--------|--------|---------|---------|---|
| 0                     | Loss<br>%                 | 18.5                      | 20.0          |          | 20.0   | 18.3   | 18.3    | 25.8    | × |
| lysin                 | Pasta<br>%                | 0.22                      | 0.20          |          | 0.24   | 0.255  | 0.255   | 0.23    |   |
| Available lysine      | Flour %                   | 0.27                      | 0.25          |          | 0.30   | 0.30   | 0.30    | 0.31    |   |
| Non                   | protein %                 | 0.121                     | 0.135         |          | 0.120  | 0.110  | 0.100   | 0.274   |   |
| Reducing              |                           | 0.27                      | 1.90          | 2        | 1.08   | 0.80   | 0.71    | 2.89    | ^ |
| (2)                   | Loss<br>%                 | 35.12                     | 37.69         |          | 22.24  | 14.57  | 23.00   | 51,41   |   |
| Pigment of            | Pasta<br>p.p.m.           | 2.05                      | 1.62          |          | 5.21   | 5.98   | 5.70    | 3,45    |   |
| Pig                   | Flour<br>p.p.m.           | 3.16                      | 2.60          |          | 6.70   | 7.00   | 7.40    | 7.10    |   |
| (1)<br>Alpha          | Amylase                   | 16.26                     | 18.80         |          | 16.39  | 13.10  | 15.26   | 19.22   |   |
| Cu Alpha              | p.p.m.                    | 0.302                     | 0.299         |          | 0.590  | 0.936  | 908.0   | 0.933   |   |
| ng A                  | Pasta                     | 0.113                     | 0.078         |          | 0.103  | 0.092  | 0.095   | 0.135   |   |
| Browning<br>at 400 nm | Flour                     | 0.159                     | 0.130         |          | 0.153  | 0.145  | 0.150   | 0.200   |   |
| Grade                 | colour<br>Figure          | 8,4                       | 4.1           |          | 3,5    | 3.6    | 3.3     | 9.01    |   |
| Ash                   | contentcolour<br>% Figure | 0.46                      | 0.42          |          | 0.73   | 0.76   | 0.72    | 1.05    |   |
|                       | ybbearai                  | Brown 0.46                | Bale<br>brown |          | yellow | yellow | yellow  | Brown   |   |
|                       | Spagnetti                 | T.<br>aestivium<br>"Amoun | Mataria       | T. Durum | Roma   | Capri  | Buitoni | Stork's |   |

(1) Reported on 15% moisture content.

<sup>(2)</sup> Reported on 12% moisture content.

Table ( $\S$  ): Farinogram of flour and semolina of commercial pasta $^{(1)}$ .

| Pasta<br>Flour and semolina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Water  | (D.D.T.) Dough | Arrival  | Dough<br>stability                                                 | se of sc<br>after |        | Valorimeter<br>value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------|----------|--------------------------------------------------------------------|-------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8      | time<br>min.   | min.     | min.                                                               | 10 min. 20        | ZO MID | The same of the sa |
| T. aestivium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                |          | ,                                                                  |                   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Flour of Amoun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 63.4   | 2.6            | 1.6      | 6.7                                                                | 55                | 96     | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Four of Mataria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 53.7   | 1.5            | 0.7      | 4.0                                                                | 06                | 130    | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                |          |                                                                    |                   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| The contract of the contract o | α<br>C | 6              | C        | 4 . C                                                              | 1 06              | 115    | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Semolina of Capri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20.0   | . E            | 1,0      | 2.0                                                                |                   | 120    | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Semolina of Buitoni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.05   | 3.2            | ۳.<br>۳. | 2.2                                                                | 90                | 115    | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Flour of Stork's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 62.1   | 1.2            | 0.3      | 2.0                                                                | 125 1             | 165    | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                |          | enderma (166) vederme (176) en |                   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

on 14% moisture basis.



Fig. (2)Farinogram of pasta dough

Table ( $\mathbf{6}$ .): Cooking quality of different commercial macaroni.(on 12% moisture basis).

| Macaroni type | Water<br>absorption<br>% | Increasing of weight % | Swelling<br>index<br>% | Cooking<br>loss |
|---------------|--------------------------|------------------------|------------------------|-----------------|
| T. aestivium  | -                        |                        | ·                      |                 |
| Amoun         | 210                      | 301                    | 4.0                    | 6.8             |
| Matalia       | 200                      | 290                    | 3.5                    | 88 . 6          |
| T. Durum      |                          |                        |                        |                 |
| Roma          | 275                      | 368                    | 4.8                    | 6.7             |
| Capri         | 292                      | 385                    | 5.1                    | 7.0             |
| Buitoni       | 268                      | 357                    | 4.6                    | 7.0             |
| Stork's       | 274                      | 365                    | 4,<br>w                | 8.9             |
|               |                          |                        |                        |                 |

Conditioning And Pasta Quality of Some Wheats.

## Cooking Quality: -

Results present in table (6) show that water absorption, increasing of weight and swelling index for pasta processed from T. aestivum are lower than that from T. durum. Cooking loss (total soluble solids) was higher in T. aestivum than in T. durum. These results are in agreement with those of Anon (1983). It is clear that imported semolina had the greatest increase of weight and higher swelling index. Pomeranz (1978), revealed that cooking loss had reverse correlation with water absorption. Therefore, samples with low amount of total soluble solids, high protein content, slight weaking of gluten properties and high percentage of weight and volume after cooking were of good cooking quality.

### REFERENCES

- A.A.C.C (1962): American Association of cereal chemists, Approved Methods,8<sup>th</sup> edition,st Paul.U.S.A.
- Abdel-Salam, A.M.(1982): Reductones and oxidants of the Millard reactions: their contribution on the production of aldehyde from alcohol. Ph.D. Thesis. Universite Catholique de Louain.
- Anon (1969): Grain processing-Machinary and Equipment for flour mills. T M S pardubice C S S R.
- ---- (1976): The practice of flour milling (vol.1)
  Inc. National Association of British and Irish
  Millers Limited.
- --- (1983): Macaroni, Egyptian Standard No 49/1983. Egyptian Organization for Stndardization.
- A.O.A.C. (1980): Association of official analytical chemists,Official Methods of Analysis.13<sup>th</sup> ed. Washington.
- Ashour, H.K. (1985): Biochemical studies on preparation and evaluation of some wheat protein concentration.Ph.D.Thesis, Ain Shams Univ., Fac. of Agric.
- Brennan, Paul. (1982):

  Flour Milling Technology, Grain and Oil Seeds.

  Handling, Marketing Processing. Canadian International
  Grains Institute. Third Ed. Reveised.

- Dexter, J.E and Matsuo, R.R. (1978): The effect of gluten protien fractions on pasta dough rheology and spaghetti making quality. Cereal chem. 55 (1) 44-57,
- Fraser, J.R. and Holmes, D.C. (1959):Proximate analysis of
   wheat flour carbohydrates IV Analysis of wholemeal
   flour and some of its fractions. J. Sci. Food Agric.
   10:506
- Hall, R.J.; Trimder, N. and Givens, D.I. (1973):Obsevations on the use of 2,4,6. trinitrobenzene sulphenoic acid for the determination of available lysine in animal protien concentrate. Analyst, 98,673-686.
- Irvin, G.N. and Anderson, J.A.(1951):Air bubbles in macaroni dough.Cereal Chem., 28:240-242.
- ---- (1971):Durum wheat and pasta products. Page 777 in:
  Pomeranz, Y., Wheat chemisry and technology, 2nd ed.
  Am. Assoc. Cereal chem.; St. paul., MN.
- Kent, N.L. (1983): Technology of cereals. Pergman Press, Third Edition.
- Kent-Jones, D.W. and Amos, A.J. (1967):
   Modern cereal chemistry, sth edition, Food Trade Press,
   London.
- Kerr, R.W.; Cleveland, F.C. and Katzbeck, W.J.(1951): The action of amyloglucosidase on amylose and amylopectin. J.Am. Chem. Soc., 73, 3916-21.
- Kingswood, K. (1975): The structure and biochemistry of the wheat grain. Bread symposium, Applied Science Pub. London. 47-66.
- Manser, J. (1981):Optimal parameters in the production of macaroni products long good as a case in point.Sonder-uck aus Getreide, Mehl and Brot 35,75-83.Buhler Br. Ltd. Switzerland.
- Matsuo, R.R. and Irvine, G.N. (1967):
   Macaroni Browness Cereal Chem. 44(1):78-85.
- ----; Bradley, J.W.; Kosmolak, K.G.and Leisle, D. (1982): Statistical evaluation of tests for assessing spaghetti making quality of durum wheat. Cereal Chem. 59(3):222-228.

- Conditioning And Pasta Quality of Some Wheats.
- Morad, M.M.; Magoli, S.B and Afifi, A.S.(1980):Macaroni supplemented with lupins and deffated soybean flour. J. Food Sci., 45(2), 404-405.
- Pomeranz, Y., (1978): Wheat chemistry and technology, PP. (791-795), Vol.III, Pub. American Association of cereal chemists, Inc. St. Paul.MN. U.S.A.
- Rafai, F.Y. (1965):Essential of milling industry. Pub. by the General Establischment of mills and Bakeries. (In Arabic).
- -----(1982):Pasta production and Technology Pub. by American Wheat Board.
- Stenvert, N.L. and Kingswood, K. (1977): The influence of physical structure of the protien matrix on wheat hard ness.J.Sci. Fd. Agric. 14:284.
- Tawfik, M. and Mansour, S. (1983):Cooking quality of macaroni produced from different flours in comparison with durum flour and semolina. Annals Agric, Sci., Fac., Agric. Ain Shams Univ. 28(3),1525-1537.
- Walsh, D.E.; Vouncs, V.L., and Gillas, K.A. (1970): Inhibition of durum wheat lipoxidase with L.Ascorbic acid Cereal chem. Vol. 47(2). 119-125.

# دراسات كيماويسة وتأثير التكييف ونوعية المكرونه لبعض أصناف القمسم

| نادية يديي عطيه    | منير عبدالعطيم تركى |
|--------------------|---------------------|
| أعمدالسيدالبردينسي | أحمدراءي عبدالاطيف  |

تمت دراسة التركيب الكيماوى وتأثير التكييف لمنف الديورم المصرى ستهرك ولمنف قمح عادى استرالى، استخدمت أيضا ثلاثة أعناف من دقيق السيمولينا المسحتورد (روما حكابرى بيوتينى) بالاضافة الى دقيق ستورك ودقيق نوعين من الاقدامات عادية المستوردة لدراسة العوامل التي تو ثر على اللون البني والنوعيه ومفات الطهلي للمكرونه المصنعه ،

تميزت هبوب ودقيق الديورم المصرى ستورك بارتفاع نسبة الرماد والاليــــاف والبروتين والسكريات ونشاط انزيم الالفا اميليز . كان أفضل زمن تكييف للديــورم المصرى ٥ ساعات بينما كانت ١٢ ساعه لصنف القمع العادى الاسترالي ، تميـــزت المكرونه انمصعه من الديرم المصرى باللون البنى وأعلى قيمة لونيه بينما المكرونــة المصنعه من دقيق السيمولينا المستورد كانت مثرا اللون ولها أقل قيمة لونيــ كذلك تميزت مكرونه المصنعه من الدقيق العادى " أمون ومطريه " باللون البنـــن النفيية ودرعة نون أقل من الستورك ، يعزى اللون البنــــ النفيية ودرعة نون أقل من الستورك ، يعزى اللون البني الى الصنف والى وجود النفالــــة والى نشاط انزيمي وتفاعلات نمير انزيميه ،

تميزت السيمولينا ودقيق الستورك بأن لهما هدة ثبات قصيرة وأما هفف العبيسن فقد أظهر دقيق الستروك أن له أكبر ضعف ،

بالنسبة لصفات السلق للمكرونه فقد تبين أن الزيادة فى الوزن والمجم للمكرونيية المسلوقة المصنعة مربين القمح العادى أقل منها فى عالة المكرونة المصنعة مربين قمح الديب